The structure of orders all of whose representations are completely decomposable
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 325-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes orders all of whose representations are completely decomposable, lying in a matrix algebra over the quotient field of a complete local Dedekind ring. For Morita-reduced orders an isomorphism criterion is provided in terms of the lattices of irreducible modules.
@article{MZM_1973_13_2_a18,
     author = {A. G. Zavadskii},
     title = {The structure of orders all of whose representations are completely decomposable},
     journal = {Matemati\v{c}eskie zametki},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/}
}
TY  - JOUR
AU  - A. G. Zavadskii
TI  - The structure of orders all of whose representations are completely decomposable
JO  - Matematičeskie zametki
PY  - 1973
SP  - 325
EP  - 335
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/
LA  - ru
ID  - MZM_1973_13_2_a18
ER  - 
%0 Journal Article
%A A. G. Zavadskii
%T The structure of orders all of whose representations are completely decomposable
%J Matematičeskie zametki
%D 1973
%P 325-335
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/
%G ru
%F MZM_1973_13_2_a18
A. G. Zavadskii. The structure of orders all of whose representations are completely decomposable. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 325-335. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/