The structure of orders all of whose representations are completely decomposable
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 325-335
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper describes orders all of whose representations are completely decomposable, lying in a matrix algebra over the quotient field of a complete local Dedekind ring. For Morita-reduced orders an isomorphism criterion is provided in terms of the lattices of irreducible modules.
@article{MZM_1973_13_2_a18,
author = {A. G. Zavadskii},
title = {The structure of orders all of whose representations are completely decomposable},
journal = {Matemati\v{c}eskie zametki},
pages = {325--335},
year = {1973},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/}
}
A. G. Zavadskii. The structure of orders all of whose representations are completely decomposable. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 325-335. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a18/