Operators commuting with multiplication in spaces of analytic functions of one variable
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 269-276
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be an analytic manifold of dimensionality $\mathfrak A(D)$ be the space of functions analytic on $D$ with the topology of compact convergence, and $\varphi(z)$ be a function from $\mathfrak A(D)$. Under certain sufficiently general assumptions relative to the manifold $D$, in the note is found the general form of a continuous linear operator $\mathfrak A(D)$, commuting with the operator of multiplication by a function $\varphi(z)$. Because of this it is established under what conditions each such operator is an operator of multiplication by some function.
@article{MZM_1973_13_2_a11,
author = {V. P. Zakharyuta and M. Yu. Tsar'kov},
title = {Operators commuting with multiplication in spaces of analytic functions of one variable},
journal = {Matemati\v{c}eskie zametki},
pages = {269--276},
year = {1973},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/}
}
TY - JOUR AU - V. P. Zakharyuta AU - M. Yu. Tsar'kov TI - Operators commuting with multiplication in spaces of analytic functions of one variable JO - Matematičeskie zametki PY - 1973 SP - 269 EP - 276 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/ LA - ru ID - MZM_1973_13_2_a11 ER -
V. P. Zakharyuta; M. Yu. Tsar'kov. Operators commuting with multiplication in spaces of analytic functions of one variable. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/