Operators commuting with multiplication in spaces of analytic functions of one variable
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 269-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be an analytic manifold of dimensionality $\mathfrak A(D)$ be the space of functions analytic on $D$ with the topology of compact convergence, and $\varphi(z)$ be a function from $\mathfrak A(D)$. Under certain sufficiently general assumptions relative to the manifold $D$, in the note is found the general form of a continuous linear operator $\mathfrak A(D)$, commuting with the operator of multiplication by a function $\varphi(z)$. Because of this it is established under what conditions each such operator is an operator of multiplication by some function.
@article{MZM_1973_13_2_a11,
     author = {V. P. Zakharyuta and M. Yu. Tsar'kov},
     title = {Operators commuting with multiplication in spaces of analytic functions of one variable},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/}
}
TY  - JOUR
AU  - V. P. Zakharyuta
AU  - M. Yu. Tsar'kov
TI  - Operators commuting with multiplication in spaces of analytic functions of one variable
JO  - Matematičeskie zametki
PY  - 1973
SP  - 269
EP  - 276
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/
LA  - ru
ID  - MZM_1973_13_2_a11
ER  - 
%0 Journal Article
%A V. P. Zakharyuta
%A M. Yu. Tsar'kov
%T Operators commuting with multiplication in spaces of analytic functions of one variable
%J Matematičeskie zametki
%D 1973
%P 269-276
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/
%G ru
%F MZM_1973_13_2_a11
V. P. Zakharyuta; M. Yu. Tsar'kov. Operators commuting with multiplication in spaces of analytic functions of one variable. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a11/