An estimate for the spectral radius of an operator associated with an equation of neutral type
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new bounds for the spectral radius of the operator $(Ax)(t)=a(t)x(t-h)$ in spaces of functions which are $\omega$-periodic, almost periodic, and continuous and bounded on the whole axis. The results are used to prove a theorem on the existence ofohgr-periodic, bounded, and almost periodic solutions for linear functional-differential equations of neutral type.
@article{MZM_1973_13_1_a7,
     author = {\`E. Mukhamadiev and B. N. Sadovskii},
     title = {An estimate for the spectral radius of an operator associated with an equation of neutral type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/}
}
TY  - JOUR
AU  - È. Mukhamadiev
AU  - B. N. Sadovskii
TI  - An estimate for the spectral radius of an operator associated with an equation of neutral type
JO  - Matematičeskie zametki
PY  - 1973
SP  - 67
EP  - 78
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/
LA  - ru
ID  - MZM_1973_13_1_a7
ER  - 
%0 Journal Article
%A È. Mukhamadiev
%A B. N. Sadovskii
%T An estimate for the spectral radius of an operator associated with an equation of neutral type
%J Matematičeskie zametki
%D 1973
%P 67-78
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/
%G ru
%F MZM_1973_13_1_a7
È. Mukhamadiev; B. N. Sadovskii. An estimate for the spectral radius of an operator associated with an equation of neutral type. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/