An estimate for the spectral radius of an operator associated with an equation of neutral type
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 67-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain new bounds for the spectral radius of the operator $(Ax)(t)=a(t)x(t-h)$ in spaces of functions which are $\omega$-periodic, almost periodic, and continuous and bounded on the whole axis. The results are used to prove a theorem on the existence ofohgr-periodic, bounded, and almost periodic solutions for linear functional-differential equations of neutral type.
@article{MZM_1973_13_1_a7,
author = {\`E. Mukhamadiev and B. N. Sadovskii},
title = {An estimate for the spectral radius of an operator associated with an equation of neutral type},
journal = {Matemati\v{c}eskie zametki},
pages = {67--78},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/}
}
TY - JOUR AU - È. Mukhamadiev AU - B. N. Sadovskii TI - An estimate for the spectral radius of an operator associated with an equation of neutral type JO - Matematičeskie zametki PY - 1973 SP - 67 EP - 78 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/ LA - ru ID - MZM_1973_13_1_a7 ER -
È. Mukhamadiev; B. N. Sadovskii. An estimate for the spectral radius of an operator associated with an equation of neutral type. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a7/