The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 29-40
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove a general theorem on the algebraic independence of the values, at algebraic points, of a set of $E$-functions each of which satisfies a first-order linear differential equation with polynomial coefficients.
@article{MZM_1973_13_1_a3,
author = {V. Kh. Salikhov},
title = {The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {29--40},
year = {1973},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/}
}
TY - JOUR AU - V. Kh. Salikhov TI - The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations JO - Matematičeskie zametki PY - 1973 SP - 29 EP - 40 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/ LA - ru ID - MZM_1973_13_1_a3 ER -
V. Kh. Salikhov. The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/