The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove a general theorem on the algebraic independence of the values, at algebraic points, of a set of $E$-functions each of which satisfies a first-order linear differential equation with polynomial coefficients.
@article{MZM_1973_13_1_a3,
     author = {V. Kh. Salikhov},
     title = {The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations
JO  - Matematičeskie zametki
PY  - 1973
SP  - 29
EP  - 40
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/
LA  - ru
ID  - MZM_1973_13_1_a3
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations
%J Matematičeskie zametki
%D 1973
%P 29-40
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/
%G ru
%F MZM_1973_13_1_a3
V. Kh. Salikhov. The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a3/