The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 135-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the limiting spectrum $C(L)$ of the non-self-conjugate second-order differential operator $L$ with slowly varying coefficients, defined in $L^2(-\infty,\infty)$. The limiting spectrum is constructed from the spectra of operators with constant coefficients which are obtained from $L$ by “freezingrd”; the argument in the variable coefficients.
@article{MZM_1973_13_1_a16,
     author = {L. B. Zelenko},
     title = {The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/}
}
TY  - JOUR
AU  - L. B. Zelenko
TI  - The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients
JO  - Matematičeskie zametki
PY  - 1973
SP  - 135
EP  - 146
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/
LA  - ru
ID  - MZM_1973_13_1_a16
ER  - 
%0 Journal Article
%A L. B. Zelenko
%T The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients
%J Matematičeskie zametki
%D 1973
%P 135-146
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/
%G ru
%F MZM_1973_13_1_a16
L. B. Zelenko. The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/