The limiting spectrum of a non-self-conjugate second-order differential operator with slowly varying coefficients
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 135-146
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the limiting spectrum $C(L)$ of the non-self-conjugate second-order differential operator $L$ with slowly varying coefficients, defined in $L^2(-\infty,\infty)$. The limiting spectrum is constructed from the spectra of operators with constant coefficients which are obtained from $L$ by “freezingrd”; the argument in the variable coefficients.
@article{MZM_1973_13_1_a16,
author = {L. B. Zelenko},
title = {The limiting spectrum of a~non-self-conjugate second-order differential operator with slowly varying coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {135--146},
year = {1973},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/}
}
TY - JOUR AU - L. B. Zelenko TI - The limiting spectrum of a non-self-conjugate second-order differential operator with slowly varying coefficients JO - Matematičeskie zametki PY - 1973 SP - 135 EP - 146 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/ LA - ru ID - MZM_1973_13_1_a16 ER -
L. B. Zelenko. The limiting spectrum of a non-self-conjugate second-order differential operator with slowly varying coefficients. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a16/