The enumeration of subgroups in finite $p$-groups
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 107-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the familiar principle of enumeration due to Hall and establish a new principle for the enumeration of subgroups of any $p$-group $G$ of order $p^m$, based on the following grouptheoretic relation found by the author: $\sum^m_{\lambda=0}(-1)^\lambda p^{\left(\lambda\atop2\right)}\mathscr E_\lambda(G)=0$, where $\mathscr E_\lambda(G)$ is the number of elementary Abelian subgroups of order $p^\lambda$ in $G$.
@article{MZM_1973_13_1_a12,
     author = {V. N. Shokuev},
     title = {The enumeration of subgroups in finite $p$-groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a12/}
}
TY  - JOUR
AU  - V. N. Shokuev
TI  - The enumeration of subgroups in finite $p$-groups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 107
EP  - 112
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a12/
LA  - ru
ID  - MZM_1973_13_1_a12
ER  - 
%0 Journal Article
%A V. N. Shokuev
%T The enumeration of subgroups in finite $p$-groups
%J Matematičeskie zametki
%D 1973
%P 107-112
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a12/
%G ru
%F MZM_1973_13_1_a12
V. N. Shokuev. The enumeration of subgroups in finite $p$-groups. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 107-112. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a12/