The number of roots of a~polynomial outside a~circle
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new criterion in terms of determinant inequalities that all the roots of a real polynomial should lie inside the unit circle, i.e., a criterion for the stability of periodic motions. In comparison with the Shur-Kon criterion, the number of determinants is halved.
@article{MZM_1973_13_1_a0,
     author = {G. F. Korsakov},
     title = {The number of roots of a~polynomial outside a~circle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/}
}
TY  - JOUR
AU  - G. F. Korsakov
TI  - The number of roots of a~polynomial outside a~circle
JO  - Matematičeskie zametki
PY  - 1973
SP  - 3
EP  - 12
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/
LA  - ru
ID  - MZM_1973_13_1_a0
ER  - 
%0 Journal Article
%A G. F. Korsakov
%T The number of roots of a~polynomial outside a~circle
%J Matematičeskie zametki
%D 1973
%P 3-12
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/
%G ru
%F MZM_1973_13_1_a0
G. F. Korsakov. The number of roots of a~polynomial outside a~circle. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/