The number of roots of a~polynomial outside a~circle
Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a new criterion in terms of determinant inequalities that all the roots of a real polynomial should lie inside the unit circle, i.e., a criterion for the stability of periodic motions. In comparison with the Shur-Kon criterion, the number of determinants is halved.
@article{MZM_1973_13_1_a0,
author = {G. F. Korsakov},
title = {The number of roots of a~polynomial outside a~circle},
journal = {Matemati\v{c}eskie zametki},
pages = {3--12},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/}
}
G. F. Korsakov. The number of roots of a~polynomial outside a~circle. Matematičeskie zametki, Tome 13 (1973) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_1973_13_1_a0/