Some criteria for the decomposability of finite groups
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 717-725
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove the following fundamental results. \underline{Theorem 1}: A finite unsolvable group, every involution of which is contained in a proper isolated subgroup, is decomposable. \underline{Theorem 2}: Suppose the finite unsolvable group $G$ contains a strongly isolated subgroup $M$ of odd order with isolated normalizer $N(M)$ of even order. If $|N(M):(M)|>2$, the group $G$ is isomorphic with one of the groups: 1) $PSL(2,q)$, $q$ odd; 2) $PGL(2,q)$, $q$ odd.
@article{MZM_1972_12_6_a8,
author = {V. M. Busarkin and N. D. Podufalov},
title = {Some criteria for the decomposability of finite groups},
journal = {Matemati\v{c}eskie zametki},
pages = {717--725},
year = {1972},
volume = {12},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/}
}
V. M. Busarkin; N. D. Podufalov. Some criteria for the decomposability of finite groups. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 717-725. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/