Some criteria for the decomposability of finite groups
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 717-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the following fundamental results. \underline{Theorem 1}: A finite unsolvable group, every involution of which is contained in a proper isolated subgroup, is decomposable. \underline{Theorem 2}: Suppose the finite unsolvable group $G$ contains a strongly isolated subgroup $M$ of odd order with isolated normalizer $N(M)$ of even order. If $|N(M):(M)|>2$, the group $G$ is isomorphic with one of the groups: 1) $PSL(2,q)$, $q$ odd; 2) $PGL(2,q)$, $q$ odd.
@article{MZM_1972_12_6_a8,
     author = {V. M. Busarkin and N. D. Podufalov},
     title = {Some criteria for the decomposability of finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--725},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/}
}
TY  - JOUR
AU  - V. M. Busarkin
AU  - N. D. Podufalov
TI  - Some criteria for the decomposability of finite groups
JO  - Matematičeskie zametki
PY  - 1972
SP  - 717
EP  - 725
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/
LA  - ru
ID  - MZM_1972_12_6_a8
ER  - 
%0 Journal Article
%A V. M. Busarkin
%A N. D. Podufalov
%T Some criteria for the decomposability of finite groups
%J Matematičeskie zametki
%D 1972
%P 717-725
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/
%G ru
%F MZM_1972_12_6_a8
V. M. Busarkin; N. D. Podufalov. Some criteria for the decomposability of finite groups. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 717-725. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a8/