The completeness of a functional sequence
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 671-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\pi_n(u)\}$ be a sequence of polynomials with a biorthogonal system, and let $\{\mathscr{P}_n(z)\}$ be functions defined in the singly connected domain $\mathrm{D}$. We consider the problem of the completeness of the system $$ A(z,\lambda_n)=\sum_{s=0}^\infty\mathscr{P}_s(z)\pi_s(\lambda_n),\qquad n=1,2,\dots, $$ in the class of functions $\mathrm{F(z)}$ having the representation $$ F(z)=\sum_{k=0}^\infty d_k \mathscr{P}_k(z). $$
@article{MZM_1972_12_6_a3,
     author = {A. A. Mirolyubov},
     title = {The completeness of a functional sequence},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--680},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/}
}
TY  - JOUR
AU  - A. A. Mirolyubov
TI  - The completeness of a functional sequence
JO  - Matematičeskie zametki
PY  - 1972
SP  - 671
EP  - 680
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/
LA  - ru
ID  - MZM_1972_12_6_a3
ER  - 
%0 Journal Article
%A A. A. Mirolyubov
%T The completeness of a functional sequence
%J Matematičeskie zametki
%D 1972
%P 671-680
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/
%G ru
%F MZM_1972_12_6_a3
A. A. Mirolyubov. The completeness of a functional sequence. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 671-680. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/