The completeness of a functional sequence
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 671-680
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{\pi_n(u)\}$ be a sequence of polynomials with a biorthogonal system, and let $\{\mathscr{P}_n(z)\}$ be functions defined in the singly connected domain $\mathrm{D}$. We consider the problem of the completeness of the system $$ A(z,\lambda_n)=\sum_{s=0}^\infty\mathscr{P}_s(z)\pi_s(\lambda_n),\qquad n=1,2,\dots, $$ in the class of functions $\mathrm{F(z)}$ having the representation $$ F(z)=\sum_{k=0}^\infty d_k \mathscr{P}_k(z). $$
@article{MZM_1972_12_6_a3,
author = {A. A. Mirolyubov},
title = {The completeness of a functional sequence},
journal = {Matemati\v{c}eskie zametki},
pages = {671--680},
year = {1972},
volume = {12},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/}
}
A. A. Mirolyubov. The completeness of a functional sequence. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 671-680. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a3/