A note on a theorem of Sunouchi
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 665-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for negative $\alpha$ Sunouchi's formula \begin{gather*} H_n(f,\alpha,\beta,x)=\frac1{A^\beta_n}\sum_{k=0}^nA_{n-k}^{\beta-1}|f(x)-\sigma_k^\alpha(f,x)|,\\ \alpha>-\frac12,\quad\beta>\frac12, \end{gather*} becomes false, where $\sigma_k^\alpha(f,x)$ is the $(C,\alpha)$ mean of the Fourier series for the function $f(x)\in\mathrm{Lip}\,\gamma$, $0\gamma1$. A bound is given for $H_n(f,\alpha,\beta,x)$ for all $\alpha>-1$, $\beta>-1$, which for $\alpha+\beta>0$, $\alpha\geqslant0$, $\beta\geqslant0$, coincides with the Sunouchi bound. The proof is by a method different from that of Sunouchi.
@article{MZM_1972_12_6_a2,
     author = {A. V. Efimov},
     title = {A note on a theorem of {Sunouchi}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--670},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a2/}
}
TY  - JOUR
AU  - A. V. Efimov
TI  - A note on a theorem of Sunouchi
JO  - Matematičeskie zametki
PY  - 1972
SP  - 665
EP  - 670
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a2/
LA  - ru
ID  - MZM_1972_12_6_a2
ER  - 
%0 Journal Article
%A A. V. Efimov
%T A note on a theorem of Sunouchi
%J Matematičeskie zametki
%D 1972
%P 665-670
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a2/
%G ru
%F MZM_1972_12_6_a2
A. V. Efimov. A note on a theorem of Sunouchi. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 665-670. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a2/