$C$-compact spaces
Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 755-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the properties of $C$-compact spaces. A negative answer is given to the questions posed by Viglino (RZhMat., 1970, 10 A 302): 1) Is every $C$-compact space a space of the second category? 2) Is the product of $C$ compacta a $C$ compactum? 3) Is a space, every continuous mapping of which is closed, a $C$ compactum?
@article{MZM_1972_12_6_a12,
     author = {A. A. Gryzlov},
     title = {$C$-compact spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {755--760},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a12/}
}
TY  - JOUR
AU  - A. A. Gryzlov
TI  - $C$-compact spaces
JO  - Matematičeskie zametki
PY  - 1972
SP  - 755
EP  - 760
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a12/
LA  - ru
ID  - MZM_1972_12_6_a12
ER  - 
%0 Journal Article
%A A. A. Gryzlov
%T $C$-compact spaces
%J Matematičeskie zametki
%D 1972
%P 755-760
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a12/
%G ru
%F MZM_1972_12_6_a12
A. A. Gryzlov. $C$-compact spaces. Matematičeskie zametki, Tome 12 (1972) no. 6, pp. 755-760. http://geodesic.mathdoc.fr/item/MZM_1972_12_6_a12/