The best approximation of the differentiation operator in the metric of~$L_p$
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 531-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

For Stechkin's problem of the best approximation for the differentiation operator $$ E_n=\inf_{\substack{L_q\\ ||V||_{L_p}\leqslant n}}\sup_{||f^{(l)}||_{L_r(S)}\leqslant 1}||f^{(k)}-Vf||_{L_q(S)} $$ we indicate the necessary and sufficient conditions that $E_n$ be finite. We study some properties of continuous linear operators $V$ from $L_p$ into $L_q$.
@article{MZM_1972_12_5_a4,
     author = {V. N. Gabushin},
     title = {The best approximation of the differentiation operator in the metric of~$L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {531--538},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a4/}
}
TY  - JOUR
AU  - V. N. Gabushin
TI  - The best approximation of the differentiation operator in the metric of~$L_p$
JO  - Matematičeskie zametki
PY  - 1972
SP  - 531
EP  - 538
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a4/
LA  - ru
ID  - MZM_1972_12_5_a4
ER  - 
%0 Journal Article
%A V. N. Gabushin
%T The best approximation of the differentiation operator in the metric of~$L_p$
%J Matematičeskie zametki
%D 1972
%P 531-538
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a4/
%G ru
%F MZM_1972_12_5_a4
V. N. Gabushin. The best approximation of the differentiation operator in the metric of~$L_p$. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 531-538. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a4/