A note on Jackson's theorem for differentiable functions
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 517-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

From previously published results of the author on the exact upper bound of best approximations by trigonometric polynomials for classes of periodic differentiable functions are derived the values of the exact constants in Jackson's inequalities for $2\pi$-periodic functions $f\in C^r$ with modulus of continuity $\omega(f^{(r)}; t)$ for the $r$-th derivative which is convex upwards.
@article{MZM_1972_12_5_a2,
     author = {N. P. Korneichuk},
     title = {A note on {Jackson's} theorem for differentiable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--522},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a2/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - A note on Jackson's theorem for differentiable functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 517
EP  - 522
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a2/
LA  - ru
ID  - MZM_1972_12_5_a2
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T A note on Jackson's theorem for differentiable functions
%J Matematičeskie zametki
%D 1972
%P 517-522
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a2/
%G ru
%F MZM_1972_12_5_a2
N. P. Korneichuk. A note on Jackson's theorem for differentiable functions. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 517-522. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a2/