Boundary value problems for linear parabolic equations degenerate on the boundary of a region
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 643-652
Cet article a éte moissonné depuis la source Math-Net.Ru
In the strip $\mathrm{Q\{\,0 we consider a linear second-order parabolic equation which is degenerate on the boundary $\mathrm{t=0}$, $\mathrm{x=0}$. Assuming that the coefficient of the time derivative has a zero of a sufficiently high order at $\mathrm{t=0}$, we find the sufficient conditions to ensure the correctness of certain boundary value problems. One of these problems occurs in the theory of the temperature boundary layer.
@article{MZM_1972_12_5_a19,
author = {T. D. Dzhuraev},
title = {Boundary value problems for linear parabolic equations degenerate on the boundary of a region},
journal = {Matemati\v{c}eskie zametki},
pages = {643--652},
year = {1972},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a19/}
}
T. D. Dzhuraev. Boundary value problems for linear parabolic equations degenerate on the boundary of a region. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 643-652. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a19/