The absence of bases from certain separable linear topological spaces
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 583-589
Cet article a éte moissonné depuis la source Math-Net.Ru
We give examples of separable linear topological spaces without Shauder-type bases. We prove that every linear set $X$ of dimension $\aleph_0< \dim X\leqslant2^2\aleph_0$ can be provided with a separable locally convex topology for which there is no Shauder-type basis.
@article{MZM_1972_12_5_a11,
author = {V. P. Kondakov},
title = {The absence of bases from certain separable linear topological spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {583--589},
year = {1972},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a11/}
}
V. P. Kondakov. The absence of bases from certain separable linear topological spaces. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 583-589. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a11/