The absolute convergence of orthogonal series
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 511-516
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain sufficient conditions for the absolute convergence of Fourier series for functions of $\mathrm{L}^2_{\mathrm{d}\psi}$ depending on the properties of the function being expanded and the rate of growth of the sums $\sum_{k=1}^n\varphi_k^2(x)$ of the system of functions $\{\varphi_k(\mathrm{t})\}$ orthonormalized in $[a,\mathrm{ b}]$ with respect to $\mathrm{d}\psi(\mathrm{t})$. We show that if at some point $x\in[a,\mathrm{b}]$ the function $\psi(\mathrm{t})$ has a discontinuity, at that point the Fourier series of any function $f(\mathrm{t})\in \mathrm{L}_{\mathrm{d}\psi}^2$, converges absolutely.
@article{MZM_1972_12_5_a1,
author = {A. S. Zinov'ev},
title = {The absolute convergence of orthogonal series},
journal = {Matemati\v{c}eskie zametki},
pages = {511--516},
year = {1972},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/}
}
A. S. Zinov'ev. The absolute convergence of orthogonal series. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 511-516. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/