The absolute convergence of orthogonal series
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 511-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the absolute convergence of Fourier series for functions of $\mathrm{L}^2_{\mathrm{d}\psi}$ depending on the properties of the function being expanded and the rate of growth of the sums $\sum_{k=1}^n\varphi_k^2(x)$ of the system of functions $\{\varphi_k(\mathrm{t})\}$ orthonormalized in $[a,\mathrm{ b}]$ with respect to $\mathrm{d}\psi(\mathrm{t})$. We show that if at some point $x\in[a,\mathrm{b}]$ the function $\psi(\mathrm{t})$ has a discontinuity, at that point the Fourier series of any function $f(\mathrm{t})\in \mathrm{L}_{\mathrm{d}\psi}^2$, converges absolutely.
@article{MZM_1972_12_5_a1,
     author = {A. S. Zinov'ev},
     title = {The absolute convergence of orthogonal series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--516},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/}
}
TY  - JOUR
AU  - A. S. Zinov'ev
TI  - The absolute convergence of orthogonal series
JO  - Matematičeskie zametki
PY  - 1972
SP  - 511
EP  - 516
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/
LA  - ru
ID  - MZM_1972_12_5_a1
ER  - 
%0 Journal Article
%A A. S. Zinov'ev
%T The absolute convergence of orthogonal series
%J Matematičeskie zametki
%D 1972
%P 511-516
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/
%G ru
%F MZM_1972_12_5_a1
A. S. Zinov'ev. The absolute convergence of orthogonal series. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 511-516. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a1/