The exact order of approximation of functions by Bernstein polynomials in a Hausdorff metric
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 501-510
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the approximation of functions by Bernstein polynomials. We prove that $$ r_{[0,1]}(f, B_n(f))\leqslant\mu_f\left(4\sqrt{\frac{\ln n}{n}}\right)+O\left(\sqrt{\frac{\ln n}{n}}\right),\eqno{(1)} $$ where $r_{[0,1]}(f, B_n(f))$ is the Hausdorff distance between the functions $f(x)$ and $B_n(f; x)$ in $[0,1]$, $$ \mu_f(\delta)=\frac12\sup_{\substack{|x_1-x_2|\leqslant\delta\\ x_1,x_2\in\Delta}}\{\sup_{x_1\leqslant x\leqslant x_2}[|f(x_1)-f(x)|+|f(x_2)-f(x)|]-|f(x_1)-f(x_2)|\} $$ is the modulus of nonmonotonicity of $f(x)$. The bound (1) is of better order than that obtained by Sendov. We show that the order of (1) cannot be improved.
@article{MZM_1972_12_5_a0,
author = {V. M. Veselinov},
title = {The exact order of approximation of functions by {Bernstein} polynomials in a {Hausdorff} metric},
journal = {Matemati\v{c}eskie zametki},
pages = {501--510},
year = {1972},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a0/}
}
V. M. Veselinov. The exact order of approximation of functions by Bernstein polynomials in a Hausdorff metric. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 501-510. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a0/