Unique determination of a convex surface and of a function defined on it
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 421-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that a convex surface and a function defined on it are uniquely determined if we know the integrals of this function on the illuminated parts and the orthogonal projections of the required convex surface.
@article{MZM_1972_12_4_a8,
     author = {Yu. E. Anikonov},
     title = {Unique determination of a convex surface and of a function defined on it},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--424},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a8/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
TI  - Unique determination of a convex surface and of a function defined on it
JO  - Matematičeskie zametki
PY  - 1972
SP  - 421
EP  - 424
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a8/
LA  - ru
ID  - MZM_1972_12_4_a8
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%T Unique determination of a convex surface and of a function defined on it
%J Matematičeskie zametki
%D 1972
%P 421-424
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a8/
%G ru
%F MZM_1972_12_4_a8
Yu. E. Anikonov. Unique determination of a convex surface and of a function defined on it. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 421-424. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a8/