A lower bound for $n$-diameters
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 413-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{D}$ be a subset of the $s$-dimensional lattice $\mathrm{Z^s}$, $\mathrm{M=M(D)}$ the number of elements in $\mathrm{D}$, $\mathscr{T}_D$ the space of trigonometric polynomials on the torus $\mathrm{T}^{\mathrm{s}}$ with spectrum concentrated in $\mathrm{D}$ and having unit norm in $\mathrm{L_2(T^{s})}$. In this paper we give the following bound for the Gel'fand diameter: $d^n(\mathscr{T}_D, C(T^s))\geqslant\sqrt{\frac M2}-\sqrt{\frac N2}$. This bound is subsequently used for actual functional classes.
@article{MZM_1972_12_4_a7,
     author = {I. F. Sharygin},
     title = {A lower bound for $n$-diameters},
     journal = {Matemati\v{c}eskie zametki},
     pages = {413--419},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a7/}
}
TY  - JOUR
AU  - I. F. Sharygin
TI  - A lower bound for $n$-diameters
JO  - Matematičeskie zametki
PY  - 1972
SP  - 413
EP  - 419
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a7/
LA  - ru
ID  - MZM_1972_12_4_a7
ER  - 
%0 Journal Article
%A I. F. Sharygin
%T A lower bound for $n$-diameters
%J Matematičeskie zametki
%D 1972
%P 413-419
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a7/
%G ru
%F MZM_1972_12_4_a7
I. F. Sharygin. A lower bound for $n$-diameters. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 413-419. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a7/