Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 403-412
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain asymptotic bounds for the perturbed eigenvalues and eigenvectors of a perturbed linear bounded operator $A(\varepsilon)$, in a Hilbert space under the assumption that $A(\varepsilon)$ is holomorphic at the point $\varepsilon=\varepsilon_0$ and the eigenvalue $\lambda_0=\lambda(\varepsilon_0)$ of the operator $A(\varepsilon_0)$ is isolated and of finite multiplicity. We study certain cases of high degeneracy in the limiting problem, i.e., the case when there are generalized associated vectors.
@article{MZM_1972_12_4_a6,
author = {Yu. Muratov},
title = {Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator},
journal = {Matemati\v{c}eskie zametki},
pages = {403--412},
year = {1972},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/}
}
Yu. Muratov. Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 403-412. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/