Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 403-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic bounds for the perturbed eigenvalues and eigenvectors of a perturbed linear bounded operator $A(\varepsilon)$, in a Hilbert space under the assumption that $A(\varepsilon)$ is holomorphic at the point $\varepsilon=\varepsilon_0$ and the eigenvalue $\lambda_0=\lambda(\varepsilon_0)$ of the operator $A(\varepsilon_0)$ is isolated and of finite multiplicity. We study certain cases of high degeneracy in the limiting problem, i.e., the case when there are generalized associated vectors.
@article{MZM_1972_12_4_a6,
     author = {Yu. Muratov},
     title = {Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/}
}
TY  - JOUR
AU  - Yu. Muratov
TI  - Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator
JO  - Matematičeskie zametki
PY  - 1972
SP  - 403
EP  - 412
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/
LA  - ru
ID  - MZM_1972_12_4_a6
ER  - 
%0 Journal Article
%A Yu. Muratov
%T Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator
%J Matematičeskie zametki
%D 1972
%P 403-412
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/
%G ru
%F MZM_1972_12_4_a6
Yu. Muratov. Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 403-412. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a6/