Free ordered modules
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 477-487
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish the necessary and sufficient condition on a partially ordered set $\mathrm{S}$ such that a free ordered $\mathrm{R}$-module ($\mathrm{R}$ is a linearly ordered ring without divisors of zero) over the set $\mathrm{S}$ is $\mathrm{o}$-isomorphic with a free ordered $\mathrm{R}$-module over a trivially ordered set.
@article{MZM_1972_12_4_a14,
author = {A. V. Mikhalev and M. A. Shatalova},
title = {Free ordered modules},
journal = {Matemati\v{c}eskie zametki},
pages = {477--487},
year = {1972},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/}
}
A. V. Mikhalev; M. A. Shatalova. Free ordered modules. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 477-487. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/