Free ordered modules
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 477-487.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the necessary and sufficient condition on a partially ordered set $\mathrm{S}$ such that a free ordered $\mathrm{R}$-module ($\mathrm{R}$ is a linearly ordered ring without divisors of zero) over the set $\mathrm{S}$ is $\mathrm{o}$-isomorphic with a free ordered $\mathrm{R}$-module over a trivially ordered set.
@article{MZM_1972_12_4_a14,
     author = {A. V. Mikhalev and M. A. Shatalova},
     title = {Free ordered modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--487},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - M. A. Shatalova
TI  - Free ordered modules
JO  - Matematičeskie zametki
PY  - 1972
SP  - 477
EP  - 487
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/
LA  - ru
ID  - MZM_1972_12_4_a14
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A M. A. Shatalova
%T Free ordered modules
%J Matematičeskie zametki
%D 1972
%P 477-487
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/
%G ru
%F MZM_1972_12_4_a14
A. V. Mikhalev; M. A. Shatalova. Free ordered modules. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 477-487. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a14/