Quasilinear operators and Hammerstein's equation
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 453-464
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the class of operators in a Hilbert space $\mathrm{H}$, introduced by A. I. Perov, which can be represented in the form $\mathrm{Ax=D(x)x}$, where $\mathrm{D(x)}$ is a self-conjugate operator satisfying the inequalities $\mathrm{B_-\leqslant D(x)\leqslant B_+}$ ($\mathrm{B_-}$ and $\mathrm{B_+}$ are fixed self-conjugate operators). As an application we obtain new theorems on the solvability of Hammerstein's equation.
@article{MZM_1972_12_4_a12,
author = {P. P. Zabreiko and A. I. Povolotskii},
title = {Quasilinear operators and {Hammerstein's} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {453--464},
year = {1972},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/}
}
P. P. Zabreiko; A. I. Povolotskii. Quasilinear operators and Hammerstein's equation. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/