Quasilinear operators and Hammerstein's equation
Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 453-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the class of operators in a Hilbert space $\mathrm{H}$, introduced by A. I. Perov, which can be represented in the form $\mathrm{Ax=D(x)x}$, where $\mathrm{D(x)}$ is a self-conjugate operator satisfying the inequalities $\mathrm{B_-\leqslant D(x)\leqslant B_+}$ ($\mathrm{B_-}$ and $\mathrm{B_+}$ are fixed self-conjugate operators). As an application we obtain new theorems on the solvability of Hammerstein's equation.
@article{MZM_1972_12_4_a12,
     author = {P. P. Zabreiko and A. I. Povolotskii},
     title = {Quasilinear operators and {Hammerstein's} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--464},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - A. I. Povolotskii
TI  - Quasilinear operators and Hammerstein's equation
JO  - Matematičeskie zametki
PY  - 1972
SP  - 453
EP  - 464
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/
LA  - ru
ID  - MZM_1972_12_4_a12
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A A. I. Povolotskii
%T Quasilinear operators and Hammerstein's equation
%J Matematičeskie zametki
%D 1972
%P 453-464
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/
%G ru
%F MZM_1972_12_4_a12
P. P. Zabreiko; A. I. Povolotskii. Quasilinear operators and Hammerstein's equation. Matematičeskie zametki, Tome 12 (1972) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/MZM_1972_12_4_a12/