The finiteness of the set of branch points of a spherical mapping of a narrowing saddle surface
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 281-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an oriented, finitely connected narrowing saddle surface $F\in C^2$ in $R^3$ on which the set of points of zero Gaussian curvature consists only of isolated points. It is proved that a spherical mapping of this surface can only have a finite number of branch points and the structure of the boundary of its spherical image is studied.
@article{MZM_1972_12_3_a8,
     author = {A. L. Verner},
     title = {The finiteness of the set of branch points of a spherical mapping of a narrowing saddle surface},
     journal = {Matemati\v{c}eskie zametki},
     pages = {281--286},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a8/}
}
TY  - JOUR
AU  - A. L. Verner
TI  - The finiteness of the set of branch points of a spherical mapping of a narrowing saddle surface
JO  - Matematičeskie zametki
PY  - 1972
SP  - 281
EP  - 286
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a8/
LA  - ru
ID  - MZM_1972_12_3_a8
ER  - 
%0 Journal Article
%A A. L. Verner
%T The finiteness of the set of branch points of a spherical mapping of a narrowing saddle surface
%J Matematičeskie zametki
%D 1972
%P 281-286
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a8/
%G ru
%F MZM_1972_12_3_a8
A. L. Verner. The finiteness of the set of branch points of a spherical mapping of a narrowing saddle surface. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 281-286. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a8/