Rearrangements of series in a Hilbert space
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 275-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on rearrangements of numerical series, proved by Agnew, is extended to series in a Hilbert space. A complete proof is given of Orlicz's theorem on unconditionally convergent series in a Hilbert space.
@article{MZM_1972_12_3_a7,
     author = {F. A. Talalyan},
     title = {Rearrangements of series in a {Hilbert} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {275--280},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a7/}
}
TY  - JOUR
AU  - F. A. Talalyan
TI  - Rearrangements of series in a Hilbert space
JO  - Matematičeskie zametki
PY  - 1972
SP  - 275
EP  - 280
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a7/
LA  - ru
ID  - MZM_1972_12_3_a7
ER  - 
%0 Journal Article
%A F. A. Talalyan
%T Rearrangements of series in a Hilbert space
%J Matematičeskie zametki
%D 1972
%P 275-280
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a7/
%G ru
%F MZM_1972_12_3_a7
F. A. Talalyan. Rearrangements of series in a Hilbert space. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 275-280. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a7/