Behavior of the solution of a parabolic equation on a characteristic
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 257-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the solution of a linear second-order parabolic equation with one spatial variable and a zero right side. We prove that since the solution decreases quite rapidly in the spatial variable as it approaches a particular point, it vanishes on the part of the characteristic joining the point to the boundary of the region in which the solution is defined.
@article{MZM_1972_12_3_a4,
     author = {E. M. Landis},
     title = {Behavior of the solution of a parabolic equation on a characteristic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {257--262},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a4/}
}
TY  - JOUR
AU  - E. M. Landis
TI  - Behavior of the solution of a parabolic equation on a characteristic
JO  - Matematičeskie zametki
PY  - 1972
SP  - 257
EP  - 262
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a4/
LA  - ru
ID  - MZM_1972_12_3_a4
ER  - 
%0 Journal Article
%A E. M. Landis
%T Behavior of the solution of a parabolic equation on a characteristic
%J Matematičeskie zametki
%D 1972
%P 257-262
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a4/
%G ru
%F MZM_1972_12_3_a4
E. M. Landis. Behavior of the solution of a parabolic equation on a characteristic. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 257-262. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a4/