Cohomologies of parabolic Lie algebras
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 251-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\mathfrak{p}$ is a parabolic subalgebra of a semisimple algebra, the cohomology of $\mathfrak{p}$ is trivial in the associated representation.
@article{MZM_1972_12_3_a3,
     author = {A. K. Tolpygo},
     title = {Cohomologies of parabolic {Lie} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--255},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a3/}
}
TY  - JOUR
AU  - A. K. Tolpygo
TI  - Cohomologies of parabolic Lie algebras
JO  - Matematičeskie zametki
PY  - 1972
SP  - 251
EP  - 255
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a3/
LA  - ru
ID  - MZM_1972_12_3_a3
ER  - 
%0 Journal Article
%A A. K. Tolpygo
%T Cohomologies of parabolic Lie algebras
%J Matematičeskie zametki
%D 1972
%P 251-255
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a3/
%G ru
%F MZM_1972_12_3_a3
A. K. Tolpygo. Cohomologies of parabolic Lie algebras. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 251-255. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a3/