Application of theorems on primes to diophantine problems of a special type
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 243-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of whether the equation $$ n=\frac{\nu_1\varphi_1-\nu_2\varphi_2}{\nu_1-\nu_2}\qquad (\nu_1\ne\nu_2) $$ can be solved and of a lower bound for the number of solutions, subject to certain constraints on the density of the numbers $\nu$ and the distribution of the numbers $\varphi$ in arithmetic progressions.
@article{MZM_1972_12_3_a2,
     author = {B. M. Bredikhin and Yu. V. Linnik},
     title = {Application of theorems on primes to diophantine problems of a special type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {243--250},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/}
}
TY  - JOUR
AU  - B. M. Bredikhin
AU  - Yu. V. Linnik
TI  - Application of theorems on primes to diophantine problems of a special type
JO  - Matematičeskie zametki
PY  - 1972
SP  - 243
EP  - 250
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/
LA  - ru
ID  - MZM_1972_12_3_a2
ER  - 
%0 Journal Article
%A B. M. Bredikhin
%A Yu. V. Linnik
%T Application of theorems on primes to diophantine problems of a special type
%J Matematičeskie zametki
%D 1972
%P 243-250
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/
%G ru
%F MZM_1972_12_3_a2
B. M. Bredikhin; Yu. V. Linnik. Application of theorems on primes to diophantine problems of a special type. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 243-250. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/