Application of theorems on primes to diophantine problems of a special type
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 243-250
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider the problem of whether the equation $$ n=\frac{\nu_1\varphi_1-\nu_2\varphi_2}{\nu_1-\nu_2}\qquad (\nu_1\ne\nu_2) $$ can be solved and of a lower bound for the number of solutions, subject to certain constraints on the density of the numbers $\nu$ and the distribution of the numbers $\varphi$ in arithmetic progressions.
@article{MZM_1972_12_3_a2,
author = {B. M. Bredikhin and Yu. V. Linnik},
title = {Application of theorems on primes to diophantine problems of a special type},
journal = {Matemati\v{c}eskie zametki},
pages = {243--250},
year = {1972},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/}
}
B. M. Bredikhin; Yu. V. Linnik. Application of theorems on primes to diophantine problems of a special type. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 243-250. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a2/