Generalized variation, the Banach indicatrix, and the uniform convergence of Fourier series
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 313-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if the continuous periodic function $f$ has bounded $\Phi$-variation, then the deviation of $f$ from the sum of $n$ terms of its Fourier series has the bound $$ ||f-S_n(f)||\leqslant c\int_0^{\omega(\pi n^{-1})}\log(v_\Phi(f)/\Phi(\xi))d\xi. $$ Here $c$ is an absolute constant, $\omega$ is the modulus of continuity, $v_\Phi(f)$ is the complete $\Phi$-variation of $f$ over a period. It is established that the Salem and Garsia–Sawyer criteria for the uniform convergence of the Fourier series in terms of the $\Phi$-variation and the Banach indicatrix respectively are definitive, and it is proved that the second of these variants is a corrolary of the first.
@article{MZM_1972_12_3_a12,
     author = {K. I. Oskolkov},
     title = {Generalized variation, the {Banach} indicatrix, and the uniform convergence of {Fourier} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {313--324},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a12/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Generalized variation, the Banach indicatrix, and the uniform convergence of Fourier series
JO  - Matematičeskie zametki
PY  - 1972
SP  - 313
EP  - 324
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a12/
LA  - ru
ID  - MZM_1972_12_3_a12
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Generalized variation, the Banach indicatrix, and the uniform convergence of Fourier series
%J Matematičeskie zametki
%D 1972
%P 313-324
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a12/
%G ru
%F MZM_1972_12_3_a12
K. I. Oskolkov. Generalized variation, the Banach indicatrix, and the uniform convergence of Fourier series. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 313-324. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a12/