Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 303-311
Cet article a éte moissonné depuis la source Math-Net.Ru
The variety $\mathfrak{A}_{m,n}$ is defined by the system of $n$-ary operations $\omega_1,\dots,\omega_m$, the system of $m$-ary operations $\varphi_1,\dots,\varphi_n$, $1\leqslant m\leqslant n$, and the system of identities $$ \begin{aligned} x_1\dots x_n\omega_1\dots x_1\dots x_n\omega_m\varphi_i &=x_i \qquad (i=1,\dots,n),\\ x_1\dots x_m\varphi_1\dots x_1\dots x_m\varphi_n\omega_j &=x_j \qquad (j=1,\dots,m).\\ \end{aligned} $$ It is proved in this paper that the subalgebra $U$ of the free product $\prod_{i\in I}^*A_i$ of the algebras $A_i$ ($i\in I$) can be expanded as the free product of nonempty intersections $U\cap A_i$ ($i\in I$) and a free algebra.
@article{MZM_1972_12_3_a11,
author = {V. N. Matus},
title = {Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$},
journal = {Matemati\v{c}eskie zametki},
pages = {303--311},
year = {1972},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/}
}
V. N. Matus. Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 303-311. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/