Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 303-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variety $\mathfrak{A}_{m,n}$ is defined by the system of $n$-ary operations $\omega_1,\dots,\omega_m$, the system of $m$-ary operations $\varphi_1,\dots,\varphi_n$, $1\leqslant m\leqslant n$, and the system of identities $$ \begin{aligned} x_1\dots x_n\omega_1\dots x_1\dots x_n\omega_m\varphi_i =x_i \qquad (i=1,\dots,n),\\ x_1\dots x_m\varphi_1\dots x_1\dots x_m\varphi_n\omega_j =x_j \qquad (j=1,\dots,m).\\ \end{aligned} $$ It is proved in this paper that the subalgebra $U$ of the free product $\prod_{i\in I}^*A_i$ of the algebras $A_i$ ($i\in I$) can be expanded as the free product of nonempty intersections $U\cap A_i$ ($i\in I$) and a free algebra.
@article{MZM_1972_12_3_a11,
     author = {V. N. Matus},
     title = {Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {303--311},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/}
}
TY  - JOUR
AU  - V. N. Matus
TI  - Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$
JO  - Matematičeskie zametki
PY  - 1972
SP  - 303
EP  - 311
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/
LA  - ru
ID  - MZM_1972_12_3_a11
ER  - 
%0 Journal Article
%A V. N. Matus
%T Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$
%J Matematičeskie zametki
%D 1972
%P 303-311
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/
%G ru
%F MZM_1972_12_3_a11
V. N. Matus. Subalgebras of free products of algebras of the variety $\mathfrak{A}_{m,n}$. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 303-311. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a11/