The right ideals of an alternative ring
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 239-242
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if $P$ is a right ideal and $I$ a two-sided ideal of an alternative ring $A$, then neither $P^2$ nor $IP$ is in general a right ideal of $A$. Moreover, it is shown that in the alternative ring $A$ the right annihilator of the right ideal $P$, i.e., the set $\mathfrak{Z}_r(P)=\{z\in A\mid Pz=0\}$, is not necessarily either a left or a right ideal, nor even a subring of $A$.
@article{MZM_1972_12_3_a1,
author = {K. A. Zhevlakov},
title = {The right ideals of an alternative ring},
journal = {Matemati\v{c}eskie zametki},
pages = {239--242},
year = {1972},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/}
}
K. A. Zhevlakov. The right ideals of an alternative ring. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 239-242. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/