The right ideals of an alternative ring
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 239-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $P$ is a right ideal and $I$ a two-sided ideal of an alternative ring $A$, then neither $P^2$ nor $IP$ is in general a right ideal of $A$. Moreover, it is shown that in the alternative ring $A$ the right annihilator of the right ideal $P$, i.e., the set $\mathfrak{Z}_r(P)=\{z\in A\mid Pz=0\}$, is not necessarily either a left or a right ideal, nor even a subring of $A$.
@article{MZM_1972_12_3_a1,
     author = {K. A. Zhevlakov},
     title = {The right ideals of an alternative ring},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--242},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/}
}
TY  - JOUR
AU  - K. A. Zhevlakov
TI  - The right ideals of an alternative ring
JO  - Matematičeskie zametki
PY  - 1972
SP  - 239
EP  - 242
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/
LA  - ru
ID  - MZM_1972_12_3_a1
ER  - 
%0 Journal Article
%A K. A. Zhevlakov
%T The right ideals of an alternative ring
%J Matematičeskie zametki
%D 1972
%P 239-242
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/
%G ru
%F MZM_1972_12_3_a1
K. A. Zhevlakov. The right ideals of an alternative ring. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 239-242. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a1/