The approximate solution of singular integral equations
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 177-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

A computational scheme of collocation type is proposed for a singular linear integral equation with a power singularity in the regular integral and the justification is given. The results obtained are used to justify the approximate solution of the singular integral equation $$ K(x)\equiv a(t)x(t)+\frac{b(t)}{\pi i}\int_{|\tau|=1}\frac{x(\tau)d\tau}{\tau-t}+ \frac1{2\pi i}\int_{|\tau|=1}\frac{h(t,\tau)x(\tau)}{|\tau-t|^\delta}d\tau=f(t) $$ by a modification of the method of minimal residuals.
@article{MZM_1972_12_2_a9,
     author = {I. V. Boikov},
     title = {The approximate solution of singular integral equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {177--186},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/}
}
TY  - JOUR
AU  - I. V. Boikov
TI  - The approximate solution of singular integral equations
JO  - Matematičeskie zametki
PY  - 1972
SP  - 177
EP  - 186
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/
LA  - ru
ID  - MZM_1972_12_2_a9
ER  - 
%0 Journal Article
%A I. V. Boikov
%T The approximate solution of singular integral equations
%J Matematičeskie zametki
%D 1972
%P 177-186
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/
%G ru
%F MZM_1972_12_2_a9
I. V. Boikov. The approximate solution of singular integral equations. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/