The approximate solution of singular integral equations
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 177-186
Cet article a éte moissonné depuis la source Math-Net.Ru
A computational scheme of collocation type is proposed for a singular linear integral equation with a power singularity in the regular integral and the justification is given. The results obtained are used to justify the approximate solution of the singular integral equation $$ K(x)\equiv a(t)x(t)+\frac{b(t)}{\pi i}\int_{|\tau|=1}\frac{x(\tau)d\tau}{\tau-t}+ \frac1{2\pi i}\int_{|\tau|=1}\frac{h(t,\tau)x(\tau)}{|\tau-t|^\delta}d\tau=f(t) $$ by a modification of the method of minimal residuals.
@article{MZM_1972_12_2_a9,
author = {I. V. Boikov},
title = {The approximate solution of singular integral equations},
journal = {Matemati\v{c}eskie zametki},
pages = {177--186},
year = {1972},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/}
}
I. V. Boikov. The approximate solution of singular integral equations. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a9/