Subvarieties of codimensionality one and of simple homotopic type
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 167-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_1: M_1\to M_2$ be a homotopic equivalence and $N\subset M_2$ a subvariety of codimensionality one. In this paper we indicate the conditions under which there is a mapping $f_2\sim f_1$ such that the variety $f_2^{-1}(N)$ is simply homotopically equivalent to the variety $N$.
@article{MZM_1972_12_2_a8,
     author = {S. B. Shlosman},
     title = {Subvarieties of codimensionality one and of simple homotopic type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a8/}
}
TY  - JOUR
AU  - S. B. Shlosman
TI  - Subvarieties of codimensionality one and of simple homotopic type
JO  - Matematičeskie zametki
PY  - 1972
SP  - 167
EP  - 175
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a8/
LA  - ru
ID  - MZM_1972_12_2_a8
ER  - 
%0 Journal Article
%A S. B. Shlosman
%T Subvarieties of codimensionality one and of simple homotopic type
%J Matematičeskie zametki
%D 1972
%P 167-175
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a8/
%G ru
%F MZM_1972_12_2_a8
S. B. Shlosman. Subvarieties of codimensionality one and of simple homotopic type. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 167-175. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a8/