Integral representations and asymptotic expansions of the incomplete probability integral
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 213-220
Cet article a éte moissonné depuis la source Math-Net.Ru
The incomplete probability integral is defined and its connection with Wen's integral is established. For the integral are obtained various integral representations and transformations with respect to both variables, on the basis of which asymptotic expansions are deduced for various values of the parameters.
@article{MZM_1972_12_2_a13,
author = {P. I. Kuznetsov and A. S. Yudina},
title = {Integral representations and asymptotic expansions of the incomplete probability integral},
journal = {Matemati\v{c}eskie zametki},
pages = {213--220},
year = {1972},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a13/}
}
TY - JOUR AU - P. I. Kuznetsov AU - A. S. Yudina TI - Integral representations and asymptotic expansions of the incomplete probability integral JO - Matematičeskie zametki PY - 1972 SP - 213 EP - 220 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a13/ LA - ru ID - MZM_1972_12_2_a13 ER -
P. I. Kuznetsov; A. S. Yudina. Integral representations and asymptotic expansions of the incomplete probability integral. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 213-220. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a13/