Graded algebras
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 197-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the growth in the number of dimensions $d_n$ of the homogeneous component of a graded algebra with a finite number of defining relations and generators for the Poincaré series $\sum d_nx^n$. It is proved that if the defining relations are words, the Poincaré series is a rational function. In the general case inequalities are proved linking the number of dimensions $d_n$ with the number of generators defining relations and their degree.
@article{MZM_1972_12_2_a11,
     author = {V. E. Govorov},
     title = {Graded algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--204},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a11/}
}
TY  - JOUR
AU  - V. E. Govorov
TI  - Graded algebras
JO  - Matematičeskie zametki
PY  - 1972
SP  - 197
EP  - 204
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a11/
LA  - ru
ID  - MZM_1972_12_2_a11
ER  - 
%0 Journal Article
%A V. E. Govorov
%T Graded algebras
%J Matematičeskie zametki
%D 1972
%P 197-204
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a11/
%G ru
%F MZM_1972_12_2_a11
V. E. Govorov. Graded algebras. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a11/