A note on locally nilpotent rings with chain conditions
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 121-126
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that a locally nilpotent ring with maximality condition for two-sided ideals is nilpotent. The restriction on the characteristic in one of the author's previously published theorems is lifted. A one-sided nil-ideal of an alternative ring, satisfying the maximality condition for right ideals, is a nilpotent ring. An example is constructed of a commutative locally nilpotent ring $A$ with maximality condition for ideals which is idempotent: $A=A^2$.
@article{MZM_1972_12_2_a0,
author = {K. A. Zhevlakov},
title = {A note on locally nilpotent rings with chain conditions},
journal = {Matemati\v{c}eskie zametki},
pages = {121--126},
year = {1972},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a0/}
}
K. A. Zhevlakov. A note on locally nilpotent rings with chain conditions. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 121-126. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a0/