A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier–Stokes system
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 59-66
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of quasilinear equations of parabolic type which approximates a nonstationary Navier–Stokes problem is considered in this article. Triple layered implicit difference schemes with a linear operator on the upper layer are constructed for this system. Rapidly converging iterative methods can be applied to find a solution on the upper layer. It is proved that the proposed scheme has error $O(\tau^2+|h|^2)$.
@article{MZM_1972_12_1_a7,
author = {E. G. D'yakonov and D. Kaushilaite},
title = {A difference-scheme with error $O(\tau^2+|h|^2)$ for a {Navier{\textendash}Stokes} system},
journal = {Matemati\v{c}eskie zametki},
pages = {59--66},
year = {1972},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/}
}
E. G. D'yakonov; D. Kaushilaite. A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier–Stokes system. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/