A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier--Stokes system
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of quasilinear equations of parabolic type which approximates a nonstationary Navier–Stokes problem is considered in this article. Triple layered implicit difference schemes with a linear operator on the upper layer are constructed for this system. Rapidly converging iterative methods can be applied to find a solution on the upper layer. It is proved that the proposed scheme has error $O(\tau^2+|h|^2)$.
@article{MZM_1972_12_1_a7,
     author = {E. G. D'yakonov and D. Kaushilaite},
     title = {A difference-scheme with error $O(\tau^2+|h|^2)$ for a {Navier--Stokes} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/}
}
TY  - JOUR
AU  - E. G. D'yakonov
AU  - D. Kaushilaite
TI  - A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier--Stokes system
JO  - Matematičeskie zametki
PY  - 1972
SP  - 59
EP  - 66
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/
LA  - ru
ID  - MZM_1972_12_1_a7
ER  - 
%0 Journal Article
%A E. G. D'yakonov
%A D. Kaushilaite
%T A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier--Stokes system
%J Matematičeskie zametki
%D 1972
%P 59-66
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/
%G ru
%F MZM_1972_12_1_a7
E. G. D'yakonov; D. Kaushilaite. A difference-scheme with error $O(\tau^2+|h|^2)$ for a Navier--Stokes system. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a7/