Approximation by splines and smooth bases in $C(0, 2\pi)$
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the deviation of the splines interpolating on a uniform net a function continuous on the whole axis by means of the $k^{\mathrm{th}}$ module of continuity. These results are applied for the construction of smooth bases in $C(0, 2\pi)$.
@article{MZM_1972_12_1_a5,
     author = {Yu. N. Subbotin},
     title = {Approximation by splines and smooth bases in $C(0, 2\pi)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a5/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - Approximation by splines and smooth bases in $C(0, 2\pi)$
JO  - Matematičeskie zametki
PY  - 1972
SP  - 43
EP  - 51
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a5/
LA  - ru
ID  - MZM_1972_12_1_a5
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T Approximation by splines and smooth bases in $C(0, 2\pi)$
%J Matematičeskie zametki
%D 1972
%P 43-51
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a5/
%G ru
%F MZM_1972_12_1_a5
Yu. N. Subbotin. Approximation by splines and smooth bases in $C(0, 2\pi)$. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a5/