A periodic in the mean extension and bases of exponential functions in $L^p(-\pi,\pi)$
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 37-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop sufficiency conditions for: 1) periodic-in-the-mean extendability of functions from $L^p$; 2) a system of exponential functions to be a basis in $L^p(-\pi,\pi)$.
@article{MZM_1972_12_1_a4,
     author = {A. M. Sedletskii},
     title = {A periodic in the mean extension and bases of exponential functions in $L^p(-\pi,\pi)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--42},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a4/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - A periodic in the mean extension and bases of exponential functions in $L^p(-\pi,\pi)$
JO  - Matematičeskie zametki
PY  - 1972
SP  - 37
EP  - 42
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a4/
LA  - ru
ID  - MZM_1972_12_1_a4
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T A periodic in the mean extension and bases of exponential functions in $L^p(-\pi,\pi)$
%J Matematičeskie zametki
%D 1972
%P 37-42
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a4/
%G ru
%F MZM_1972_12_1_a4
A. M. Sedletskii. A periodic in the mean extension and bases of exponential functions in $L^p(-\pi,\pi)$. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 37-42. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a4/