Determination of the jump of a function of bounded $p$-variation by its Fourier series
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula is obtained for the jump of a function of bounded $p$-variation at a given point in terms of derivatives of partial sums of its Fourier series.
@article{MZM_1972_12_1_a2,
     author = {B. I. Golubov},
     title = {Determination of the jump of a function of bounded $p$-variation by its {Fourier} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Determination of the jump of a function of bounded $p$-variation by its Fourier series
JO  - Matematičeskie zametki
PY  - 1972
SP  - 19
EP  - 28
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a2/
LA  - ru
ID  - MZM_1972_12_1_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Determination of the jump of a function of bounded $p$-variation by its Fourier series
%J Matematičeskie zametki
%D 1972
%P 19-28
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a2/
%G ru
%F MZM_1972_12_1_a2
B. I. Golubov. Determination of the jump of a function of bounded $p$-variation by its Fourier series. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 19-28. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a2/