On the imbedding problem for local fields
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
The imbedding problem of local fields is considered for the case where the whole of the group is a $p$-group having as many generators as the Galois group of the extension and the extension consists of a primitive root of 1 of degree equal to the period of the kernel. It is proved that it is necessary and sufficient for the solvability of this problem that a concordance condition (and even a weaker condition) be satisfied (see [4]).
@article{MZM_1972_12_1_a11,
author = {B. B. Lur'e},
title = {On the imbedding problem for local fields},
journal = {Matemati\v{c}eskie zametki},
pages = {91--94},
year = {1972},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/}
}
B. B. Lur'e. On the imbedding problem for local fields. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/