On the imbedding problem for local fields
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The imbedding problem of local fields is considered for the case where the whole of the group is a $p$-group having as many generators as the Galois group of the extension and the extension consists of a primitive root of 1 of degree equal to the period of the kernel. It is proved that it is necessary and sufficient for the solvability of this problem that a concordance condition (and even a weaker condition) be satisfied (see [4]).
@article{MZM_1972_12_1_a11,
     author = {B. B. Lur'e},
     title = {On the imbedding problem for local fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/}
}
TY  - JOUR
AU  - B. B. Lur'e
TI  - On the imbedding problem for local fields
JO  - Matematičeskie zametki
PY  - 1972
SP  - 91
EP  - 94
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/
LA  - ru
ID  - MZM_1972_12_1_a11
ER  - 
%0 Journal Article
%A B. B. Lur'e
%T On the imbedding problem for local fields
%J Matematičeskie zametki
%D 1972
%P 91-94
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/
%G ru
%F MZM_1972_12_1_a11
B. B. Lur'e. On the imbedding problem for local fields. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a11/