Generalized classical quotient rings
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 677-686
Cet article a éte moissonné depuis la source Math-Net.Ru
We find necessary and sufficient conditions for a generalized classical quotient ring to be a principal ideal ring, a local ring, or a completely primary ring. As corollaries, the corresponding results are obtained for classical quotient rings.
@article{MZM_1972_11_6_a8,
author = {V. P. Elizarov},
title = {Generalized classical quotient rings},
journal = {Matemati\v{c}eskie zametki},
pages = {677--686},
year = {1972},
volume = {11},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/}
}
V. P. Elizarov. Generalized classical quotient rings. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/