Generalized classical quotient rings
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 677-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find necessary and sufficient conditions for a generalized classical quotient ring to be a principal ideal ring, a local ring, or a completely primary ring. As corollaries, the corresponding results are obtained for classical quotient rings.
@article{MZM_1972_11_6_a8,
     author = {V. P. Elizarov},
     title = {Generalized classical quotient rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--686},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/}
}
TY  - JOUR
AU  - V. P. Elizarov
TI  - Generalized classical quotient rings
JO  - Matematičeskie zametki
PY  - 1972
SP  - 677
EP  - 686
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/
LA  - ru
ID  - MZM_1972_11_6_a8
ER  - 
%0 Journal Article
%A V. P. Elizarov
%T Generalized classical quotient rings
%J Matematičeskie zametki
%D 1972
%P 677-686
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/
%G ru
%F MZM_1972_11_6_a8
V. P. Elizarov. Generalized classical quotient rings. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a8/