On the question of the algebraic independence of algebraic powers of algebraic numbers
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 635-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain results showing that transcendental numbers of the form $a^\beta$, where $a\ne0,1$, $\beta$ is irrational, and $a$ and $\beta$ are algebraic numbers, cannot be expressed algebraically in terms of two of the numbers. The proof is carried out by A. O. Gel'fond's method.
@article{MZM_1972_11_6_a3,
     author = {A. A. Shmelev},
     title = {On the question of the algebraic independence of algebraic powers of algebraic numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--644},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/}
}
TY  - JOUR
AU  - A. A. Shmelev
TI  - On the question of the algebraic independence of algebraic powers of algebraic numbers
JO  - Matematičeskie zametki
PY  - 1972
SP  - 635
EP  - 644
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/
LA  - ru
ID  - MZM_1972_11_6_a3
ER  - 
%0 Journal Article
%A A. A. Shmelev
%T On the question of the algebraic independence of algebraic powers of algebraic numbers
%J Matematičeskie zametki
%D 1972
%P 635-644
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/
%G ru
%F MZM_1972_11_6_a3
A. A. Shmelev. On the question of the algebraic independence of algebraic powers of algebraic numbers. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 635-644. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/