On the question of the algebraic independence of algebraic powers of algebraic numbers
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 635-644
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain results showing that transcendental numbers of the form $a^\beta$, where $a\ne0,1$, $\beta$ is irrational, and $a$ and $\beta$ are algebraic numbers, cannot be expressed algebraically in terms of two of the numbers. The proof is carried out by A. O. Gel'fond's method.
@article{MZM_1972_11_6_a3,
author = {A. A. Shmelev},
title = {On the question of the algebraic independence of algebraic powers of algebraic numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {635--644},
year = {1972},
volume = {11},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/}
}
A. A. Shmelev. On the question of the algebraic independence of algebraic powers of algebraic numbers. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 635-644. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a3/