Asymptotic number of points on certain ellipsoids
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 625-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the number of integral representations of large numbers by ternary positive quadratic forms of a special type, assuming a boundary of zeros of Dirichlet $L$-functions with real characters.
@article{MZM_1972_11_6_a2,
     author = {E. P. Golubeva},
     title = {Asymptotic number of points on certain ellipsoids},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--634},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Asymptotic number of points on certain ellipsoids
JO  - Matematičeskie zametki
PY  - 1972
SP  - 625
EP  - 634
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a2/
LA  - ru
ID  - MZM_1972_11_6_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Asymptotic number of points on certain ellipsoids
%J Matematičeskie zametki
%D 1972
%P 625-634
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a2/
%G ru
%F MZM_1972_11_6_a2
E. P. Golubeva. Asymptotic number of points on certain ellipsoids. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 625-634. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a2/