Asymptotic number of solutions of some systems of diophantine inequalities
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 619-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the asymptotic number of solutions of the system of inequalities \begin{gather*} ||\alpha_iq||^{-\sigma_i}\qquad(i=1,\dots,n),\quad\sigma_i>0,\\ \sigma=\sum_{i=1}^n\sigma_i(\alpha_1,\dots,\alpha_n),\qquad q=1,\dots,N,\\ \end{gather*} is solved under the assumption that for real numbers $\alpha_1,\dots,\alpha_n$, starting from some $Q=\max(q_1,\dots,q_n)$ the inequality $$ ||\alpha_1q_1+\dots+\alpha_nq_n||\geqslant\frac1{Q^{n+\lambda}} $$ holds for any real $\lambda\geqslant0$.
@article{MZM_1972_11_6_a1,
     author = {V. I. Bernik},
     title = {Asymptotic number of solutions of some systems of diophantine inequalities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--623},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
TI  - Asymptotic number of solutions of some systems of diophantine inequalities
JO  - Matematičeskie zametki
PY  - 1972
SP  - 619
EP  - 623
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/
LA  - ru
ID  - MZM_1972_11_6_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%T Asymptotic number of solutions of some systems of diophantine inequalities
%J Matematičeskie zametki
%D 1972
%P 619-623
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/
%G ru
%F MZM_1972_11_6_a1
V. I. Bernik. Asymptotic number of solutions of some systems of diophantine inequalities. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 619-623. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/