Asymptotic number of solutions of some systems of diophantine inequalities
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 619-623
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of finding the asymptotic number of solutions of the system of inequalities
\begin{gather*}
||\alpha_iq||^{-\sigma_i}\qquad(i=1,\dots,n),\quad\sigma_i>0,\\
\sigma=\sum_{i=1}^n\sigma_i(\alpha_1,\dots,\alpha_n),\qquad q=1,\dots,N,\\
\end{gather*}
is solved under the assumption that for real numbers $\alpha_1,\dots,\alpha_n$,
starting from some $Q=\max(q_1,\dots,q_n)$ the inequality
$$
||\alpha_1q_1+\dots+\alpha_nq_n||\geqslant\frac1{Q^{n+\lambda}}
$$
holds for any real $\lambda\geqslant0$.
@article{MZM_1972_11_6_a1,
author = {V. I. Bernik},
title = {Asymptotic number of solutions of some systems of diophantine inequalities},
journal = {Matemati\v{c}eskie zametki},
pages = {619--623},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/}
}
V. I. Bernik. Asymptotic number of solutions of some systems of diophantine inequalities. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 619-623. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a1/