On the $\varepsilon$-minimax character of the hotelling $T^2$ test for nonnormal distributions
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 527-536
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper investigates the robustness of the minimax property of the Hotelling test for distributions close to normal. It is proven that the $T^2$ test maximizes, among all tests, the level $\alpha$ of minimal power on the set of alternatives to within $O(\varepsilon)$.
@article{MZM_1972_11_5_a6,
author = {L. A. Khalfin and N. M. Khalfina},
title = {On the $\varepsilon$-minimax character of the hotelling $T^2$ test for nonnormal distributions},
journal = {Matemati\v{c}eskie zametki},
pages = {527--536},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a6/}
}
TY - JOUR AU - L. A. Khalfin AU - N. M. Khalfina TI - On the $\varepsilon$-minimax character of the hotelling $T^2$ test for nonnormal distributions JO - Matematičeskie zametki PY - 1972 SP - 527 EP - 536 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a6/ LA - ru ID - MZM_1972_11_5_a6 ER -
L. A. Khalfin; N. M. Khalfina. On the $\varepsilon$-minimax character of the hotelling $T^2$ test for nonnormal distributions. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 527-536. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a6/