Best approximations by rational functions with respect to the Hausdorff distance
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 491-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse theorems on the best approximations of plane sets in a Hausdorff metric by means of rational functions are cited. It is shown, among other things, that if $R_{n,r}(F,[a,b])=o(1/n)$, then there exists a set $P\subset[a,b]$ of complete measure over which $F$ constitutes a single-valued function.
@article{MZM_1972_11_5_a2,
     author = {K. N. Lungu},
     title = {Best approximations by rational functions with respect to the {Hausdorff} distance},
     journal = {Matemati\v{c}eskie zametki},
     pages = {491--498},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a2/}
}
TY  - JOUR
AU  - K. N. Lungu
TI  - Best approximations by rational functions with respect to the Hausdorff distance
JO  - Matematičeskie zametki
PY  - 1972
SP  - 491
EP  - 498
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a2/
LA  - ru
ID  - MZM_1972_11_5_a2
ER  - 
%0 Journal Article
%A K. N. Lungu
%T Best approximations by rational functions with respect to the Hausdorff distance
%J Matematičeskie zametki
%D 1972
%P 491-498
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a2/
%G ru
%F MZM_1972_11_5_a2
K. N. Lungu. Best approximations by rational functions with respect to the Hausdorff distance. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 491-498. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a2/