Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 585-596
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that every holomorphic function of $n$ variables which has singularities on analytic surfaces, whose equations are linearly dependent, can be represented as the sum of functions, each of which has less than one singular surface. This fact is used to construct a basis for the space of functions which are holomorphic in the domain $$ C^n\setminus\bigcup_{j=1}^N\left\{z:\sum_{\nu=1}^n c_{j\nu}z_\nu+c_{j0}=0\right\}. $$
@article{MZM_1972_11_5_a13,
author = {A. P. Yuzhakov},
title = {Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {585--596},
year = {1972},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/}
}
TY - JOUR AU - A. P. Yuzhakov TI - Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions JO - Matematičeskie zametki PY - 1972 SP - 585 EP - 596 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/ LA - ru ID - MZM_1972_11_5_a13 ER -
A. P. Yuzhakov. Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 585-596. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/