Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 585-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every holomorphic function of $n$ variables which has singularities on analytic surfaces, whose equations are linearly dependent, can be represented as the sum of functions, each of which has less than one singular surface. This fact is used to construct a basis for the space of functions which are holomorphic in the domain $$ C^n\setminus\bigcup_{j=1}^N\left\{z:\sum_{\nu=1}^n c_{j\nu}z_\nu+c_{j0}=0\right\}. $$
@article{MZM_1972_11_5_a13,
     author = {A. P. Yuzhakov},
     title = {Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {585--596},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/}
}
TY  - JOUR
AU  - A. P. Yuzhakov
TI  - Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 585
EP  - 596
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/
LA  - ru
ID  - MZM_1972_11_5_a13
ER  - 
%0 Journal Article
%A A. P. Yuzhakov
%T Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions
%J Matematičeskie zametki
%D 1972
%P 585-596
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/
%G ru
%F MZM_1972_11_5_a13
A. P. Yuzhakov. Sufficient conditions for separation of analytic singularities in $C^n$ and a basis for a space of holomorphic functions. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 585-596. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a13/