On a transformation operator for a system of Sturm--Liouville equations
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 559-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a transformation operator with a condition at infinity that sends a solution of the matrix equation $-y''+My=\lambda^2y$ ($M$ is a constant Hermitian matrix) into a solution of the matrix equation $-y''+Q(x)y+My=\lambda^2y$ (the matrix function $Q(x)$ is continuously differentiable for $0\leqslant x\infty$ and it is Hermitian for each $x$ belonging to $[0,\infty)$); we study some properties of the kernel of the transformation operator.
@article{MZM_1972_11_5_a10,
     author = {M. B. Veliev and M. G. Gasymov},
     title = {On a transformation operator for a system of {Sturm--Liouville} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--567},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/}
}
TY  - JOUR
AU  - M. B. Veliev
AU  - M. G. Gasymov
TI  - On a transformation operator for a system of Sturm--Liouville equations
JO  - Matematičeskie zametki
PY  - 1972
SP  - 559
EP  - 567
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/
LA  - ru
ID  - MZM_1972_11_5_a10
ER  - 
%0 Journal Article
%A M. B. Veliev
%A M. G. Gasymov
%T On a transformation operator for a system of Sturm--Liouville equations
%J Matematičeskie zametki
%D 1972
%P 559-567
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/
%G ru
%F MZM_1972_11_5_a10
M. B. Veliev; M. G. Gasymov. On a transformation operator for a system of Sturm--Liouville equations. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 559-567. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/