On a transformation operator for a system of Sturm–Liouville equations
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 559-567
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the existence of a transformation operator with a condition at infinity that sends a solution of the matrix equation $-y''+My=\lambda^2y$ ($M$ is a constant Hermitian matrix) into a solution of the matrix equation $-y''+Q(x)y+My=\lambda^2y$ (the matrix function $Q(x)$ is continuously differentiable for $0\leqslant x<\infty$ and it is Hermitian for each $x$ belonging to $[0,\infty)$); we study some properties of the kernel of the transformation operator.
@article{MZM_1972_11_5_a10,
author = {M. B. Veliev and M. G. Gasymov},
title = {On a transformation operator for a system of {Sturm{\textendash}Liouville} equations},
journal = {Matemati\v{c}eskie zametki},
pages = {559--567},
year = {1972},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/}
}
M. B. Veliev; M. G. Gasymov. On a transformation operator for a system of Sturm–Liouville equations. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 559-567. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a10/