Sets of absolute convergence of double trigonometric series
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 473-480
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a sufficient condition for a set of plane measure zero to be a set of absolute convergence (an A.C.-set) for a double trigonometric series. Specifically, let $y=f(x)$ ($0\leqslant x\leqslant2\pi$) be a smooth curve and let $\bigvee\limits_0^{2\pi}\ln|f'(x)|<\infty$. Then, any set of positive linear measure lying on this curve is an A.C.-set.
@article{MZM_1972_11_5_a0,
author = {R. A. Avetisyan},
title = {Sets of absolute convergence of double trigonometric series},
journal = {Matemati\v{c}eskie zametki},
pages = {473--480},
year = {1972},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a0/}
}
R. A. Avetisyan. Sets of absolute convergence of double trigonometric series. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 473-480. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a0/