On the exactness of a theorem of Mazur and Orlicz
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 431-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a preassigned unbounded sequence $\{S_n\}$ of complex numbers, and preassigned complex numbers $z_1$ and $z_2\ne z_1$ we consruct: 1) regular matrices $A=||a_{nk}||$ and $B=||b_{nk}||$ such that the same bounded sequences are summable by these matrices and that $\lim\limits_{n\to\infty}S_n=z_1(A)$, $\lim\limits_{n\to\infty}S_n=z_2(B)$; 2) regular matrices $A^{(1)}=||a^{(1)}_{nk}||$ and $B^{(1)}=||b^{(1)}_{nk}||$ such that $B^{(1)}\subseteq A^{(1)}$, $\lim\limits_{n\to\infty}S_n=z_1(A^{(1)})$ and $\lim\limits_{n\to\infty}S_n=z_2(B^{(1)})$. Our results show that the well known theorem of Mazur–Orlicz on the bounded consistency of two regular matrices, one of which is boundedly stronger than the other, is exact.
@article{MZM_1972_11_4_a9,
     author = {N. A. Davydov},
     title = {On the exactness of a theorem of {Mazur} and {Orlicz}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {431--436},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a9/}
}
TY  - JOUR
AU  - N. A. Davydov
TI  - On the exactness of a theorem of Mazur and Orlicz
JO  - Matematičeskie zametki
PY  - 1972
SP  - 431
EP  - 436
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a9/
LA  - ru
ID  - MZM_1972_11_4_a9
ER  - 
%0 Journal Article
%A N. A. Davydov
%T On the exactness of a theorem of Mazur and Orlicz
%J Matematičeskie zametki
%D 1972
%P 431-436
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a9/
%G ru
%F MZM_1972_11_4_a9
N. A. Davydov. On the exactness of a theorem of Mazur and Orlicz. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 431-436. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a9/